-
Introduction to Machine learning
-
Linear Regression
-
Linear Regression live coding demonstration part-1
-
Linear Regression live coding demonstration part-2
-
Project Admission Prediction, Lasso, Ridge & Elastic Net
-
Project deployment in Heroku, Azure & AWS
-
Logistic Regression
-
Logistic Regression implementation
-
Decision Tree
-
Decision Tree Part 2 , Ensemble Tech, Random Forest & Boosting
-
KNN and SVM
-
Decision Tree Practical Implementation
-
Decision Tree Live Coding & Grid Search
-
Grid Search, Bagging Classifier & Random Forest
-
KNN, SVC, SVR & Stacking
-
Clustering
-
Clustering and PCA
-
PCA practical, DBSCAN and Naive Bayes
-
XG Boost, NLTK & TF-IDF